М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mrgrabik
mrgrabik
02.03.2022 09:39 •  Геометрия

Дано : ас1 правильная четырехугольная призма о центр вписанного шара, радиус шара =2 найти s bod

👇
Ответ:
nankasvanka
nankasvanka
02.03.2022

Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности. 

Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание. 

Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание. 

Вывод: радиус сферы, вписанной в прямую призму высота которой равна h, равен половине этой высоты.

4,5(47 оценок)
Открыть все ответы
Ответ:
E041Shvan
E041Shvan
02.03.2022
Рассмотрим треугольники АОС и BOD. Они равны по двум сторонам и углу между ними (первый признак равенства треугольников):
- АО=ВО=СО=DO как радиусы окружности;
- <AOC=<BOD как вертикальные углы.
В равных равнобедренных треугольниках АОС и BOD равны углы ОАС, ОСА, ODB, OBD при основаниях АС и BD. Рассмотрим, например, равные углы ОСА и ODB. Это накрест лежащие углы при пересечении двух прямых АС и BD секущей CD. Используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Значит АС II BD. 
Отрезки ав и cd - диаметры окружности. докажите, что ас параллельно bd.
4,8(25 оценок)
Ответ:
Vika47696
Vika47696
02.03.2022
Поскольку касательные перпендикулярны радиусу в точке касания, то треугольники ОАС и OBD прямоугольные. Рассмотрим их. Здесь:
- АО=ВО как радиусы окружности;
- <COA=<DOB как вертикальные углы.
Используем один из признаков равенства прямоугольных треугольников: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Значит, в равных треугольниках  ОАС и OBD равны и их гипотенузы. ОС=OD.
Отрезок ab является диаметром окружности с центром в точке о. в точках а и в проведены касательные к
4,4(20 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ