Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
угол MOН = 64 град.
180 - 64 = 116 - угол MOP
по свойствам прямоугольника, треуг. НOM и KOP равны.
=> 64 град = это углы OMP и OPM , а т.к. это равнобед. треуг. ,
то 64:2 = 32 град.
ответ: 32 градуса.
2. Получается, что из определения трапеции мы знаем что у нее 2 основания. а в равнобедренной трапеции углы при основании равны. следовательно:
трапеция АВСД.
угол А=углуД= 70
уголВ= углуС=110(т.к. сумма всех углов в четырехугольнике 360 градусов, то 360-140=220/2=110
4. В равнобедренной трапеции углы при одном основании равны
∠В = ∠С = 210 /2 = 105° (каждый угол при меньшем основании)
Сумма всех углов трапеции = 360°
360° - 210° = 150° - сумма углов при большем основании
∠ А = ∠ Д =150 / 2 = 75°
ответ: 75° ; 105°; 105°; 75° - углы трапеции.
5. Пусть одна сторона параллеограмма x, тогда другая x+6.
(х+х+6)2=P=60см.
2х+6=30см.
2х=24см.
х=12см. - одна сторона парллеограмма.
12+6=18см - другая сторона.