A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
судя по СОВЕРШЕННО НЕПОНЯТНОМУ условию :)) точка N общая, и речь идет о касательных, проведенных из точки N к какой-то окружности. Причем К и М СКОРЕЕ ВСЕГО - точки касания двух разных касательных проведенных из N.
Так вот, угол между касательными из одной точки может быть любым. Это зависит от положения точки N относительно окружности. Это ответ на вопрос.
К примеру, если точка N очень далеко от окружности, и радиус окружности очень маленький, то угол между касательными будет очень маленьким.
Но центр окружности О всегда лежит на биссектрисе угла KNM, и радиусы, соединяющие центр О с точками касания, то есть OM и OK, перпендикулярны сторонам угла. Это свойство касательной. Сумма углов MNK и MOK равна 180 градусам.
Отрезок, соединяющий K и М всегда перпендикулярен ON, точки K и M симметричны относительно ON.
Ну, и всегда NK = NM.
Вроде это все, что можно рассказать только про касательные.
А есть еще свойства секущих : и совместные свойства касательных и секущих...
в photomath посмотри и узнай отвкт