1)
а) (3; 3)
б) АВ(2; 8) |AB|=√4+64=√68=2√17
c) -1=2k+b|*2
7=4k+b
-2=4k+2b
7=4k+b
-9=b
2k=-1-b=8
k=4
y=4x-9
2)(0;0 )
б)CD(-6;8) |CD|=√36+64=10
r=5
в)x²+x²=25
3)середина АС (2;1) середина BD(2;1)
ABCD параллелограмм
AB(2;4)|AB|=√20
BC(2;-4)|BC|=√20
CD(-2; -4)|CD|=√20
AD(2; -4)|AD|=√20
AB=BC=CD=AD
ABCD ромб
4) (3;3)
|AB|=√18=3√3
8=4k+b
-2=2k+b
8=4k+b
-4=4k+2b
12=-b
b=-12
k=5
y=5x-12
5)(0;3 )
б)CD(-8;0) |CD|=√64=8
r=4
в)(x+8)²+y²=16
6) AB(-3;-3)|AB|=3√2
BC(2;-2) |BC|=2√2
CD(3;3)|CD|=3√2
AD(2;-2)|AD|=2√2
ABCD параллелограмм
AC(-1;-5)|AC|=√26
BD(5;1)BD=√26
ABCD прямоугольник
Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8