Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
Пусть дан равнобедренный треугольник АВD. Центр вписанной окружности находится в точке О пересечения биссектрис.Значит АО и DО - биссектрисы. Проведем биссектрису ВН. Треугольник равнобедренный, значит ВН является и высотой и медианой. Тогда АН=DН=12:2=6. Касательные из одной точки к окружности равны (свойство). Следовательно, ЕD=DН=CA=AH=6. ВЕ=ВС=18-6=12 и треугольник СВЕ так же равнобедренный. Треугольники СВЕ и АВD подобны, так как сли две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны (ВС/ВА=ВЕ/ВD и <B - общий). Коэффициент их подобия равен отношению соответственных сторон, то есть СЕ/АD=12/18=2/3. Тогда СЕ=АD*(2/3) или СЕ=12*2/3=8. ответ: СЕ=8.
( по теореме о сумме углов в треугольнике)
уголA+уголB+уголC=180градусов
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
следовательно
9Х=180
Х=180:9
Х=20градусов
20 умножить на 3 равно 60 градусов
20 умножить на 5 равно 100 градусов
ответ: получили угол А=20градусов, угол В= 60 градусов, угол С= 100 градусов.