М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Partners04
Partners04
03.06.2022 11:37 •  Геометрия

Сторони трикутника дорівнюють 3см , 6см , и 8см. знайти сторони подібного йому трикутника у якого сума найменших сторін = 22см

👇
Ответ:

логичнее сумма наименьшей и наибольшей сторон 22. Тогда 3+8=11

11/22=1/2. стороны другого  треугольника больше в 2 раза:6, 12 и 16см.

 

если сумма наименьших сторон, то будет 3+6=9 и 9/22 - это клээфициент подобия. стороны второго треугольника умножать сторону первого на 22/9

4,7(66 оценок)
Открыть все ответы
Ответ:
макс13372004
макс13372004
03.06.2022

Объяснение:

Определение

Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.

Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .

Приведем классические и важнейшие известные примеры ГМТ.

Пример

Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).

Пример

Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.

Пример

Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.

 

Пример

Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.

Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".

Утверждение

ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств

4,4(81 оценок)
Ответ:
DIANA89320
DIANA89320
03.06.2022

Объяснение:

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого

4,5(71 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ