Т.к. призма правильная, то в основании ее лежит равносторонний треугольник. Так же призма является прямой, т.е. боковые ребра перпендикулярны основанию.
Сторона основания, диагональ боковой грани и боковое ребро образуют прямоугольный треугольник, у которого сторона основания и боковое ребро - это катеты, а диагональ боковой грани - гипотенуза (рисунок сделать легко).
По теореме Пифагора найдем боковое ребро (оно же будет и высотой: призмы Н: Н² = 10² - 6² = 100 - 36 = 64 = 8², т.е. Н = 8 см.
Площадь полной поверхности призмы находят по формуле
Sполн = 2Sосн + Sбок = 2 · а²√3/4 + Росн · Н, где а - сторона основания.
Росн = 3а = 3 · 6 = 18 (см), тогда
Sполн = 2 · 6² ·√3/4 + 18 · 8 = 18√3 + 18 · 8 = 18(√3 + 8) (см²)
ответ: 18(√3 + 8) см².
Высота и биссектриса отличаются в 2 раза. Проведены они к одной стороне, значит высота в 2 раза меньше биссектрисы (перпендикуляр к прямой всегда меньше наклонной)
АН - высота, АМ - биссектриса.
АМ = 2АН, тогда в прямоугольном треугольнике АМН ∠АМН = 30°.
Обозначим ∠МАС = х, тогда ∠ВАС = ∠ВСА = 2х.
Для треугольника МАС угол АМВ - внешний, равен сумме двух внутренних, не смежных с ним.
∠АМВ = ∠МАС + ∠МСА = х + 2х = 3х
1) Пусть ΔАВС остроугольный, тогда ∠АМВ = 180° - 30° = 150°
3x = 150°
x = 50°, но тогда углы при основании равнобедренного треугольника равны по 100°, что невозможно.
2) ΔАВС - тупоугольный. ∠АМВ = 30°
3x = 30°
x = 10°
∠ВАС = ∠ВСА = 20°
∠АВС = 180° - (20° + 20°) = 140°