М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
onexochu
onexochu
30.05.2022 02:41 •  Геометрия

а равных векторов
b коллинеарных векторов
с перпендикулярных векторов​


а равных векторовb коллинеарных векторовс перпендикулярных векторов​

👇
Открыть все ответы
Ответ:
derakA
derakA
30.05.2022

sin<C=

BC

BH

=

17

15

cos<C=

BC

HC

=

17

8

tg<C=

HC

BH

=

8

15

=1

8

7

ctg<C=

BH

HC

=

15

8

Объяснение:

Высота равнобедренного треугольника, опущенная на основание является медианой, то есть делит основание на 2 равных отрезка, т.е. AH = HC = AC : 2 = 16 : 2 = 8 (см)

Тогда боковую сторону можем найти по теореме Пифагора: BC = \sqrt{BH^{2} + HC^{2}} = \sqrt{8^{2} + 15^{2}} = \sqrt{64 + 225} = \sqrt{289} = 17 (cm)BC=

BH

2

+HC

2

=

8

2

+15

2

=

64+225

=

289

=17(cm)

Пользуясь определениями синуса, косинуса, тангенса и котангенса найдем их для <C. Будем рассматривать прямоугольный треугольник BHC:

\begin{gathered}sin < C = \frac{BH}{BC} = \frac{15}{17}cos < C = \frac{HC}{BC} = \frac{8}{17}tg < C = \frac{BH}{HC} = \frac{15}{8} = 1\frac{7}{8} ctg < C = \frac{HC}{BH} = \frac{8}{15}\end{gathered}

sin<C=

BC

BH

=

17

15

cos<C=

BC

HC

=

17

8

tg<C=

HC

BH

=

8

15

=1

8

7

ctg<C=

BH

HC

=

15

8

Объяснение:

4,7(87 оценок)
Ответ:
элиза29с
элиза29с
30.05.2022

По 1 аксиоме Гильберта плоскость АВС существует, 
По 3 – М и К и , соответсвенно Х принадлежат этой плоскости . 

Аксиоматика Гильберта 

1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка. 
2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки. 
3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости. 
4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям. 
5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.

4,5(31 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ