В числителе должно быть целое число, а в знаменателе корень. Дан куб ABCDA1B1C1D1 с длиной ребра 1 ед. изм. На ребре A1D1 отмечена точка M — так, что A1M:MD1=1:2. Определи синус угла ϕ между прямой AM и диагональной плоскостью(BB1D1D).
Вот смотри. Есть любой n-угольник. Мы в нем рисуем все возможные диагонали. В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам. Но к двум соседним углам идут стороны, а к остальным диагонали. Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей. А всего диагоналей в n-угольнике будет n*(n-3) Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2. Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.
Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Есть любой n-угольник. Мы в нем рисуем все возможные диагонали.
В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам.
Но к двум соседним углам идут стороны, а к остальным диагонали.
Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей.
А всего диагоналей в n-угольнике будет n*(n-3)
Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2.
Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.