Задача № 4 -
Вариант 1: АС = с*b /(а-с);
Вариант 2: АВ = (а * с) / b
Задача № 5 - см. объяснение.
Объяснение:
Задача № 4.
Вариант 1.
1) Треугольники АСС1 и АВВ1 подобны, согласно признаку о равенстве 3-х углов.
2) В подобных треугольниках отношения сторон, лежащих против равных углов, равны.
3) Составляем пропорцию и решаем её:
а : с = (АС+b) : АС,
откуда (т.к. в пропорции произведение средних равно произведению крайних)
а * АС = с*АС + с*b,
а * АС - с*АС = с*b,
АС *(а-с) = с*b,
АС = с*b /(а-с)
ответ: АС = с*b /(а-с)
Вариант 2.
1) Треугольники АСС1 и АВВ1 подобны, согласно признаку о равенстве 3-х углов.
2) В подобных треугольниках отношения сторон, лежащих против равных углов, равны.
3) Составляем пропорцию и решаем её:
b : АВ = с : а,
откуда (т.к. в пропорции произведение средних равно произведению крайних)
а * b = АВ * с,
АВ = (а * с) / b
ответ: АВ = (а * с) / b
Задача № 5.
Вариант 1.
1) В параллелограмме АВСD AB║ СD, так как являются противоположными сторонами параллелограмма.
2) В трапеции АВМN АВ ║ МN, так как являются основаниями трапеции.
3) Если две прямые СD и МN параллельны третьей прямой (AB), то они параллельны между собой. То есть СD║ МN.
Вариант 2.
1) Согласно условию задачи, АВСD и АВМN не лежат в одной плоскости, а пересекаются по линии АВ. Это значит, что точка C лежит в одной плоскости (АВСD), а точка N - в другой (АВМN) и не на линии АВ. Следовательно, прямые АВ и СN не лежат в одной плоскости, и, согласно определению, являются скрещивающимися (мимобiжнi).
Тут достраивать нужно прямую (или не прямую, по рисунку нужно ориентироваться) через точку В. Предположительно, это будет внешний угол, равный 50 градусам, далее обычные вычисления.