М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Privetcsfvxs
Privetcsfvxs
25.02.2022 04:27 •  Геометрия

В равносторонснем треугольнике АВС: ВD – медиана, АС = 10. Найдите скалярное произведение (BC) ⃗∙(BD) ⃗

👇
Открыть все ответы
Ответ:
Чай22
Чай22
25.02.2022

Пусть центр данной окружности О, хорда АВ, диаметр СМ перпендикулярен АВ и  пересекает её в середине хорды точке Н. АН=ВН. СО=ОМ - радиусы. 

Для второй окружности, хорда АВ - касательная. Следовательно, диаметр СН перпендикулярен АВ и, чтобы быть наибольшим из возможных, должен лежать на диаметре СМ данной окружности. 

Соединив О и А, получим прямоугольный ∆ АОН. Этот треугольник -"египетский", катет ОН=3 ( можно проверить по т.Пифагора). 

 Тогда СН=СО+ОН=5+3=8. Диаметр внутренней окружности СН=8, ее радиус 8:2=4, и S=πr=16π


Вокружности радиуса 5 проведена хорда длины 8. большая из окружностей, касающейся данной окружности
4,8(23 оценок)
Ответ:
Olesya1223
Olesya1223
25.02.2022
Жили да были два треугольника. Один - равносторонний, у которого все стороны были одинаковой длины, сам он был весь правильный, симметричный, его очень часто школьники использовали, чтобы изучать доказательства теорем и решать геометрические задачи, другой - с разными сторонами, весь "кривенький", неправильный, некрасивый, неровный, вышагивал он, прихрамывая и получая насмешки от другого теругольника. Надо упомянуть, что, несмотря на все это, площадь обоих треугольников высчитывать по одной формуле: по формуле Герона (кроме того, для каждого из них, индивидуально: для равностороннего - по формуле S = (a² * √3)/4, где a – сторона треугольника, для произвольного - S = c²/(2 * (ctg∠α * ctg∠β)) или S = (c² * sin∠α * sin∠β)/2 * sin(∠α + ∠β)).
Несмотря на общее - то, что они оба были треугольниками - и различия в их мировоззрениях и формах, оба они обладали совершенно разными характерами. Первый был самоуверенным, себялюбивым и гордым. Другой знал себе цену, не слишком много о себе задумываясь, в то же время, его харатер более покладистый и уравновешенный, - по-видимому, компенсация за непропорциональную внешность.
У первого треуголника, пусть его зовут Найс - была очень легкая жизнь. Он мало рассуждал о ней, жил, ни о чем не заботясь. Другой - Гуд - был очень вдумчивым, часто размышлял о смысле существования и старался улучшить ее. Эти двое не слишком ладили, но и не вздорили. У каждого был свой круг друзей - Найс дружил с правильными фигурами, - кубом, октаэдром, додекаэдром, пентагондодекаэдром.. . Гуд уживался со всеми фиграми советом, пользой всем тем, чем мог. Он был дорб по натуре.
Оба треугольника жили в тетрадке у девочки, которая училась в пятом классе и любила геометрию. Она часто рисовала оба треугольника, когда решала задачи. А еще она их рисовала на классной доске.
Можно было бы сказать о том, что оба они прожили довольно длинную (до конца 36-листовой тетрадки) нормальную жизнь любого треугольника, вот только один из треугольников рисовался чаще другого, впрочем особого значения этот факт не имеет. Оба треугольника недолюбливали ластик - он мог их стереть начисто, что случалось не так часто. У треугольников была ровная, спокойная жизнь. Она бал окрашена разными цветами красок - в том случае, если эти фигуры попадали в поле деятельности девочки на уроках рисования. Но это уже другая история.. . Там треугольники сливались с окружающими фигурами и теряли свои формы, переставая быть треуголниками. У каждого из них были, конечно, свои привычки, любимые цвета, любое время дня и вечера
4,5(48 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ