. Бісектриса кута N паралелограма MNKL ділить сторо- ну KL на два відрізки KB i BL так, що KB : BL = 7:2. Знайдіть сторони паралелограма, якщо його периметр дорівнює 96 см.
Что-то не так. Во-первых, опечатка - не призма, а пирамида. Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды. Значит, считаем, что это 4-угольная правильная пирамида. В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней). Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным. Нижние вершины куба лежат на средних линиях основания KM и LN. Справа я нарисовал сечение пирамиды плоскостью SLN. В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба, а основание PR = P1R1 = x√2 - диагонали грани куба. Теперь решаем задачу. Сторона основания пирамиды а, диагональ AC = BD = a√2, OC = a√2/2, угол наклона бокового ребра α. В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α. В треугольнике LOS катет OL = a/2, по теореме Пифагора SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α) SL = a/2*√(1 + 2tg α) Угол наклона апофемы к плоскости основания OLS = β: tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α В треугольнике RR1L катет RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α) Но мы знаем, что PR = x√2 и NP = RL. Получаем NL = NP + PR + RL a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
1) хорда ba делит окружность на две дуги,одна из которых равна 126,диаметр ab делит окружность на две дуги,одна из которых равна 180,а другая x,наглядно видно,что получается три дуги - одна в 126 градусов,другая - в 180,третья - в x.сумма дуг окружностей равна 360 градусам,т.е 360-180-126=x=54,дуга ac равна 54,а вписанный угол abc равен,как известно,половине дуги,на которую он опирается,т.е угол abc=27. 2) хорда ab делит окружность на две дуги,одна равна 110,а другая - 250,вот эта большая дуга,равная 250,делится точкой c на две дуги - 12x и 13x (всегда можно записать пропорциональность в таком виде,например, в отношении 1/2 - это x и 2x) , т.е 25x=250,x=10,вписанный угол cab опирается на "дугу 13x",т.е на дугу,равную 130 градусам,т.е он равен 65 градусам.
МN=27см, NK=21 см, KL=27 см, ML=21 см.
Объяснение:
1) Биссектриса пересекает противоположное основание, в результате чего образуется равнобедренный треугольник NBK, что следует из равенства углов:
угол MNB = углу BNK - согласно условию задачи;
угол MNB = углу KBN - как углы углы внутренние накрест лежащие при параллельных MN и LK и секущей NB);
значит, угол BNK равен углу KBN, и, следовательно, треугольник KBN является равнобедренным.
В этом равнобедренном треугольнике BК = 7, согласно условию задачи, а NK = BK как сторона равнобедренного треугольника.
Отсюда: NK = 7 частей.
2) Выразим периметр параллелограмма в частях:в частях:
- большая сторона равна 7 частей + 2 части = 9 частей;
- меньшая сторона равна 7 частей;
- всего (9+7) * 2 = 32 части.
3) Так как периметр = 96 см, то длина одной части составляет:
96 : 32 = 3 см
4) Находим стороны параллелограмма:
МN = KL = 9 * 3 = 27 см;
NK = ML = 7 * 3 = 21 см.
Проверка: 27*2 + 21*2= 54+42= 96
ответ: МN=27см, NK=21 см, KL=27 см, ML=21 см.