Средняя линия разделена на два отрезка. Первый длиной 5,5- средняя линия треугольника, поэтому верхнее основание в два раза большей средней линии треугольника и равно11 Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса Угол 3 равен углу 1 как внутренние накрест лежащие Значит угол 2 равен углу 3 Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее. Получим два равнобедренных треугольника, с катетами (25-11):2=7 По теореме Пифагора высота h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24² h=24 S=(a+b)·h/2=(11+25)·24/2=432 кв. см
АВСД - параллелограмм
Из точки В проведено 2 перпендикуляра на стороны АД и СД
Назовем их ВК и ВМ соответственно
ВК = 6
ВМ = 10
СД = АВ (как стороны параллелограмма)
Р = 2АВ + 2АД = 48
АВ + АД = 24
Диагональ ВД делит параллелограм на равные по площади треугольники с высотами ВК и ВМ
Площадь АВД = 1/2 * АД * ВК = 3 АД
Площадь ДВС = 1/2 * ДС * ВМ = 5 ДС = 5 АВ
сложим систему: 3 АД = 5 АВ АВ + АД = 24 АВ = 24 - АД 3 АД = 5(24 - АД) 3 АД = 120 - 5 АД 8 АД = 120 АД = 15 АВ = 24 - 15 = 9 Разность между смежными сторонами параллелограмма равна 15 - 9 = 6