1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.