АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
1) Наименьшая диагональ на рис. это АС.
Рассмотрим для начала ΔАВС, он рабнобедренный, угол А=углу С=(180-120)/2=30.
Тогда угол САF будет равен 90(120-30).
Теперь рассмотрим ΔАВО он равностороний. Значит большаяя диагональ равна двум сторонам.
Рассмотрим ΔАСF он прямоугольный. По теореме Пифагора:
CF²=AC²+AF², т. к. CF тоже наибольшая диагональ, то CF=2AF
4AF²=AC²+AF²
3AF²=AC²
AF=AC/√3
AF=5 см
CF=2*5=10(см)
2) Пусть площадь будет S, тогда
S=(3√3AB²)/2
AB=AF
AB=5
S=(3√3*25)/2=37,5√3 см²
ответ: наибольшая диагональ равна 10 см; площадь 37,5√3 см².