т.к. данные прямые равны, они образуют в пространстве равнобедренный треугольник, а т.к. угол между прямыми 60 градусов, то этот треугольник не только равнобедренный, но и равносторонний, т.е. основание этого треугольника = тоже 2см
это же основание является гипотенузой прямоугольного треугольника на плоскости, образованного проекциями наклонных, этот прямоугольный треугольник тоже будет равнобедренным (его катеты равны, как проекции равных наклонных)
по т.Пифагора 2^2 = a^2 + a^2 = 2a^2
a^2 = 2
a = V2 ---катет прямоугольного треугольника на плоскости, проекция наклонной
расстояние от точки до плоскости --- перпендикуляр к плоскости, получился еще один прямоугольный треугольник, но уже в пространстве, один катет ---искомое расстояние, второй катет ---проекция наклонной, гипотенуза ---наклонная
по т.Пифагора x^2 = 2^2 - a^2 = 4-2 = 2
x = V2
Одна из формул нахождения площади трапеции
S= 1/2*AC*BD*sin угла (AC, BD)
где AC и BD - диагонали трапеции
получается S = 1/2 * 8 * 5 корней из 3 * 1\2 = 10 корней из 3