В параллелограмме ABCD диагонали пересекаются в точке M . Вырази векторы DA−→− и BC−→− через векторы a→=DM−→− , b→=MA−→− . Выбери правильный вариант ответа:
В К С Вначале через точку M проведем КЕIIAB. В па- M раллелограмме АВКЕ рассматриваем тр-ки АBM A Е Д ВMК и АMЕ. Высота к основанию АВ=высоте к основанию КM и=высоте к основанию ЕM. Отсюда Sbmk+Same=1/2h*KM+ +1/2h*EM=1/2h*(KM+EM)=1/2h*KE, a KE=AB Sabm=1/2h*AB, т.е. Samb= =Sbmk+Same. Аналогично доказывается, что Scdm=Skmc+Semd Sabm+Scmd=Sbmk+Same+Skmc+Semd, a Sbmk+Skmc=Sbmc и Same+Semd= Sadm, т.е. Sabm+Scmd=Sbcm+Sadm, что и требовалось доказать
В К С Вначале через точку M проведем КЕIIAB. В па- M раллелограмме АВКЕ рассматриваем тр-ки АBM A Е Д ВMК и АMЕ. Высота к основанию АВ=высоте к основанию КM и=высоте к основанию ЕM. Отсюда Sbmk+Same=1/2h*KM+ +1/2h*EM=1/2h*(KM+EM)=1/2h*KE, a KE=AB Sabm=1/2h*AB, т.е. Samb= =Sbmk+Same. Аналогично доказывается, что Scdm=Skmc+Semd Sabm+Scmd=Sbmk+Same+Skmc+Semd, a Sbmk+Skmc=Sbmc и Same+Semd= Sadm, т.е. Sabm+Scmd=Sbcm+Sadm, что и требовалось доказать
Последний вариант , смело пиши