Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12
1. ΔАОВ: ∠АОВ = 90°, АВ = АО/ cos60° = 2 см АВ = АС = 2 см ΔАВС: ∠САВ = 90°, по теореме Пифагора ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒ ВС = 2 см ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = 2/√2 = √2 см ΔАОВ: по теореме Пифагора АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒ ВС = АВ = АС = х ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = х/√2 ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒ ∠ABO = 45° ∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.