М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ga77
ga77
08.05.2022 15:57 •  Геометрия

(метка : са-22, вариант а2, 1) основание пирамиды - прямоугольник со сторонами 9 см и 16 см. высота пирамиды проходит через одну из вершин основания и равна 12 см. а) докажите, что боковые грани пирамиды - прямоугольные треугольники б) найдите площадь боковой поверхности пирамиды. (обращаю внимание, я могу сделать эту сам, но у меня нет времени и возможности, большее чем обычно количество пунктов за ясность и чертеж, т.к. делаю не для себя. не можете - не беритесь. ) чертеж доказательство

👇
Ответ:
diniska3
diniska3
08.05.2022

В решении задачи пригодится


1)Теорема о трех перпендикулярах.


Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна этой наклонной.


2) Теорема Пифагора.

 

Решение.


Основание АВСD пирамиды SАBСD- прямоугольник.


Наклонные SB и SD имеют проекции ВС и CD

Прямая ВА перпендикулярна проекции ВС наклонной SB.

АВ перпендкулярна SB.


Прямая АD перпендикулярна проекции СD наклонной SD.
АD перпендикулярна SD


Углы SDА и SВА - прямые.

Следовательно,  Δ SDА и ΔSВА - прямоугольные. 


SС перпендикулярна плоскости основания, ⇒ перпендикулярна ВС и СD.
Δ SСB и ΔSСD - прямоугольные.


Все грани пирамиды пирамиды SАBСD - прямоугольные треугольники.


Площадь прямоугольного треугольника равна половине произведения его катетов.


Катеты треугольников SСB и SСD даны в условии задачи.
Это SС и СB в треугольнике SСB,
Это SС и СD в треугольнике SСD.


Катеты треугольника SВА - сторона ВС основания и
гипотенуза SВ треугольника SСB


Катеты треугольника SDА - сторона СD основания и
гипотенуза SD треугольника SСD.


Найдем SВ и SD по теореме Пифагора.
SD =√(СD² +SС²)=√(9²+12²)=15 см
SВ =√(SС²+ВС²)=√(16²+12²)=20 см


Площадь боковой поверхности пирамиды равна сумме площадей боковых граней пирамиды.
Площадь Δ  SCВ =СS·BC:2=12·16:2

-"-"-"-"-"-"- Δ  SВА=SВ·ВА:2=20·9:2

-"-"-"-"-"-"- Δ SDА=SD·DА:2=15·16:2

-"-"-"-"-"-"- Δ SСD=SC·СD:2=12·9:2

 

S боковая=(12·16+20·9+15·16+12·9):2

S боковая=(192+ 180+ 240+108):2=360 см²

 


(метка : са-22, вариант а2, 1) основание пирамиды - прямоугольник со сторонами 9 см и 16 см. высота
4,5(97 оценок)
Открыть все ответы
Ответ:
коля860
коля860
08.05.2022

Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,

          ∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°

Найти : Sбок

Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы.    H ∈ AB, AH = BH.

SH⊥(ABC)  ⇒  SH⊥AB  ⇒  ∠SHA=90°

ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45°   ⇒  AH = SH = 4 см    ⇒  AB = AH + BH = 8 см;  SA = 4√2 см

SA = SB = SC = 4√2 см

ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см

По теореме Пифагора

AC² = AB² - BC² = 8² - 4² = 48

AC = √48 = 4√3 см

S_{\Delta ASB}=\dfrac{AB\cdot SH}2=\dfrac {8\cdot 4}2=16 см²

Площадь двух других граней можно найти по формуле Герона

S=\sqrt{p(p-a)(p-b)(p-c)}

ΔASC, p=\dfrac{4\sqrt2+4\sqrt2+4\sqrt3}2=4\sqrt2+2\sqrt3

S_{\Delta ASC}=\sqrt{(4\sqrt2+2\sqrt3)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt3)}=\\\\=\sqrt{(4\sqrt2+2\sqrt3)(2\sqrt3)(2\sqrt3)(4\sqrt2-2\sqrt3)}=\sqrt{(32-12)\cdot 12}=\sqrt{240}\boldsymbol{=4\sqrt{15}}

ΔBSC, p=\dfrac{4\sqrt2+4\sqrt2+4}2=4\sqrt2+2

S_{\Delta BSC}=\sqrt{(4\sqrt2+2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4)}=\\\\=\sqrt{(4\sqrt2+2)\cdot2\cdot2(4\sqrt2-2)}=\sqrt{(32-4)\cdot 4}=\sqrt{28\cdot 4}\boldsymbol{=4\sqrt{7}}

S=S_{\Delta ASB}+S_{\Delta ASC}+S_{\Delta BSC}=16+4\sqrt{15}+4\sqrt 7

ответ:  4(4 + √15 + √7) см²


Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образ
4,6(39 оценок)
Ответ:
Kurtynau
Kurtynau
08.05.2022

Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,

          ∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°

Найти : Sбок

Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы.    H ∈ AB, AH = BH.

SH⊥(ABC)  ⇒  SH⊥AB  ⇒  ∠SHA=90°

ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45°   ⇒  AH = SH = 4 см    ⇒  AB = AH + BH = 8 см;  SA = 4√2 см

SA = SB = SC = 4√2 см

ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см

По теореме Пифагора

AC² = AB² - BC² = 8² - 4² = 48

AC = √48 = 4√3 см

S_{\Delta ASB}=\dfrac{AB\cdot SH}2=\dfrac {8\cdot 4}2=16 см²

Площадь двух других граней можно найти по формуле Герона

S=\sqrt{p(p-a)(p-b)(p-c)}

ΔASC, p=\dfrac{4\sqrt2+4\sqrt2+4\sqrt3}2=4\sqrt2+2\sqrt3

S_{\Delta ASC}=\sqrt{(4\sqrt2+2\sqrt3)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt3)}=\\\\=\sqrt{(4\sqrt2+2\sqrt3)(2\sqrt3)(2\sqrt3)(4\sqrt2-2\sqrt3)}=\sqrt{(32-12)\cdot 12}=\sqrt{240}\boldsymbol{=4\sqrt{15}}

ΔBSC, p=\dfrac{4\sqrt2+4\sqrt2+4}2=4\sqrt2+2

S_{\Delta BSC}=\sqrt{(4\sqrt2+2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4)}=\\\\=\sqrt{(4\sqrt2+2)\cdot2\cdot2(4\sqrt2-2)}=\sqrt{(32-4)\cdot 4}=\sqrt{28\cdot 4}\boldsymbol{=4\sqrt{7}}

S=S_{\Delta ASB}+S_{\Delta ASC}+S_{\Delta BSC}=16+4\sqrt{15}+4\sqrt 7

ответ:  4(4 + √15 + √7) см²


Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образ
4,8(9 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ