Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Нельзя
Объяснение:
Обозначим ребра, идущие к вершине тетраэдра a, b, c.
А ребра в основании тетраэдра d, e, f.
Допустим, что можно так расставить числа от 1 до 6, что суммы на вершинах будут одинаковы и равны какому-то числу n.
Выпишем суммы на вершинах:
a + b + c = n
a + d + e = n
c + d + f = n
b + e + f = n
Складываем все 4 уравнения:
a+b+c+a+d+e+c+d+f+b+e+f = 4n
Каждое ребро повторяется по 2 раза:
2(a + b + c + d + e + f) = 4n
Сокращаем на 2:
a + b + c + d + e + f = 2n
Получилось, что сумма должна быть чётным числом. Но сумма:
a + b + c + d + e + f = 1 + 2 + 3 + 4 + 5 + 6 = 21 - нечётное.
Поэтому такая расстановка чисел от 1 до 6 на рёбрах тетраэдра невозможна.
И любой ряд из 6 чисел подряд - тоже нельзя так расставить.