Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Треугольник СДЕ прямоугольный и равнобедренный, так как СЕ высота трапеции, а угол СДЕ равен 450, тогда СЕ = ЕД = 4 см.
Так как BF высота трапеции, то BF = СЕ = 4 см, а треугольник АВF прямоугольный, тогда: tg60 = BF / AF. AF = BF / tg60 = 4 / √3 см.
Длина отрезка EF = ВС = 5 см, тогда АД = AF + EF + ДЕ = 4 / √3 + 5 + 4 = 9 + 4 / √3 см.
Определим площадь трапеции:
Sавсд = (ВС + АД) * СЕ / 2 = (5 + 9 + 4 / √3) * 4 / 2 = 28 + 8 / √3 = (84 + 8 * √3) / 3 см2.
ответ: Площадь трапеции равна (84 + 8 * √3) / 3 см2
как то так =)