Так как треугольник ABC - равнобедренный ( по условию ) медиана AH, равная 8 см, будет являться также высотой и биссектрисой. Треугольник ABH - прямоугольный, AB = 10 см,
AH = 8 см. По теореме Пифагора: BH ² = AB ² - AH ²
BH ² = 10 ² - 8 ² = 100 - 64 = 36
BH = 6 см.
BH - половина BC => BC = 12 см. Треугольник BCC1 - прямоугольный. По теореме Пифагора находим высоту призмы: CC1 ² = BC1 ² - BC ²
CC1 ² = 13 ² - 12 ² = 169 - 144 = 25.
CC1 = 5 см.
Объем призмы равен произведению площади основания на высоту: V = S * h
Высоту мы уже нашли - осталось найти площадь основания.
Треугольник ABC содержит в себе два прямоугольных треугольника => площадь ABC равна сумме площадей этих треугольников. S ABH = 8 * 6 * 0,5 = 24 см ². Площадь второго треугольника тоже равна 24. Значит S ABC = 24 + 24 = 48 см ².
V = 48 * 5 = 240 см ³.
P.S: Приношу извинения за кривой рисунок, рисовал в паинте :)
1. Угол между боковым ребром и плоскостью основания пирамиды равен 45°.
2. Объем пирамиды равен 24 ед.³
Объяснение:
Требуется найти:
1. Угол между боковым ребром и плоскостью основания пирамиды.
2. Объем пирамиды.
476.
Дано: SABCD - правильная пирамида.
∠DSC - 60°;
Найти: ∠SCO.
В основании правильной четырехугольной пирамиды лежит квадрат, а боковые грани - равнобедренные треугольники.1. Рассмотрим ΔDSC - равнобедренный.
Углы при основании равнобедренного треугольника равны.∠DSC = 60° ⇒ ∠SDC = ∠SCD = (180° - 60°) : 2 = 60°
⇒ ΔDSC - равносторонний.
⇒ Все ребра пирамиды равны.
Пусть ребро пирамиды равно а.
2. Рассмотрим ΔАСD - прямоугольный.
По теореме Пифагора:
AC² = AD² + DC²
AC = a√2
Диагонали квадрата точкой пересечения делятся пополам.⇒
3. Рассмотрим ΔОSC - прямоугольный.
Пусть ∠SCO = α
Косинус угла равен отношению прилежащего катета к гипотенузе.⇒ α = 45°
Угол SCO равен 45°.
486.
Дано: SABC - пирамида;
ВС = 9; АС = 10; АВ = 17;
Грани составляют с плоскостью основания углы в 45°.
Найти: V пирамиды.
Если боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то высота, опущенная из вершины на основание, падает в центр вписанной в основание окружности.Объем пирамиды равен:
, где S - площадь основания, h - высота пирамиды.
1. Радиус вписанной окружности найдем по формуле:
,
где S - площадь треугольника, р - полупериметр.
p = (9 + 10 + 17) : 2 = 18 (ед.)
Площадь найдем по формуле Герона:
, где a, b, c - стороны треугольника.
(ед.²)
Тогда радиус равен:
r = ОН = 36 : 18 = 2 (ед.)
2. Рассмотрим ΔОSH - прямоугольный.
Угол между боковой гранью и основанием равен двугранному углу SBCO.Двугранный угол измеряется величиной линейного угла, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.⇒∠SHO = 45°
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠HSO = 90° - 45° = 45°
Тогда ΔОSH - равнобедренный.
⇒ ОН = SO = 2 (ед.)
3. Найдем объем:
(ед.³)