Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
Квадрат можно разрезать на два равных или два неравных и не подобных прямоугольника. Если нужны неравные, но подобные, то этого сделать нельзя. Т.к. одна из сторон (длина) будет одинакова, а ширина разная. А в подобных прямоугольниках длина и ширина одного прямоугольника должна равно относиться к длине и ширине другого. Вывод: нельзя сделать 2 неравных подобных прямоугольника из квадрата
Но это при условии, что нужно использовать весь квадрат. Если можно оставить какую-то его часть, то можно сделать неравных подобных прямоугольника.