М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anastasiyaryum1
anastasiyaryum1
05.10.2020 16:00 •  Геометрия

В ромбі кут між його стороною і діагоналлю дорівнює 35°.Знайдіть всі кути ромба​

👇
Открыть все ответы
Ответ:
Вова1337228
Вова1337228
05.10.2020
В параллелограмме сумма углов при одной стороне равна 180º.
3π/4=135º, следовательно, острый угол параллелограмма равен 45º.
Треугольник АВD- вписанный, точки А, В и D лежат на окружности. Следовательно, точка В является точкой касания, т.к. в противном случае окружность имела бы с касательной (прямой ВС)  две общие точки, что противоречит определению касательной. 
Тогда  ВМ , проведенный в точку касания - диаметр описанной окружности. 
Угол OВС=90º,  АВО=45º.⇒ угол АОВ=90º
Хорда АD  параллельна ВС и потому перпендикулярна диаметру ВМ. Хорда, перпендикулярная диаметру, делится им пополам. Прямоугольные треугольники АВО и ВDO равны по равным катетам, следовательно, угол ВDО=ВАО=45º, угол АВО=45º, OBD=45º, ⇒ угол ABD= 90º. ⇒ угол ВDС=90º
Треугольник АВД равнобедренный прямоугольный, ВD - перпендикулярна  и равна АВ и DC, и является высотой параллелограмма. 
S (ABCD)=BD*DC=2*2=4 (ед. площади)
Впараллелограмме abcd окружность, описанная около треугольника аbd, касается прямой св. найдите площ
4,5(8 оценок)
Ответ:
Biserka1999
Biserka1999
05.10.2020
Это задача на теорему Менелая.
(AC1/C1B)*(BA1/A1C)*(CB1/B1A) = 1; B1 - точка пересечения C1A1 и AC; вообще то тут стоит -1; но про ориентацию отрезков в данном случае можно забыть.
Пусть B1C = y; B1A = x;
(2/5)*(6/1)*y/(x + y) = 1; Это применена теорема Менелая к треугольнику ABC.
x + y = (12/5)*y; x = (7/5)*y; AM = MC = x/2 = (7/10)*y; MB1 = y + x/2 = (17/10)*y;
Теперь теорема Менелая применяется к треугольнику ABM (можно и к CBM);
(AC1/C1B)*(BN/NM)*(MB1/B1A) =1;
(2/5)*(BN/NM)*(17/10)/(12/5) = 1;
BN/NM = 60/17;

Для тех, кто не знаком с теоремой Менелая (которая доказывается элементарно), есть такой вариант решения (коротко)
Если провести параллельные AC прямые через C1 и A1, то стороны и медиана разобьются на куски в пропорциях 5:1:1, считая от вершины B. 
Получилась трапеция с основаниями (5/7)*x и (6/7)*x; x = AC; в которой C1A1 - диагональ. Она делит заключенный между "основаниями" кусок медианы в пропорции 5/6, считая от меньшего.
То есть, если медиана m, то между основаниями (1/7)*m; и эта "седьмушка" делится на куски (5/11)*(1/7)*m и (6/11)*(1/7)*m;
нужное отношение
BN/NM = ((5/7)*m + (5/11)*(1/7)*m)/((1/7)*m + (6/11)*(1/7)*m) = 60/17
4,5(21 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ