полупериметр равен 11, синус 60° равен √3/2, площадь параллелограмма равна произведению его смежных сторон на синус угла между ними, если одна из сторон равна х см
, то другая, смежная ей, равна 11-х, а площадь
х*(11-х)*√3/2=14
х²-11х+28/√3=0
х=(11±√(121-112/√3))/2,
х=(11±√(121-112/√3))/2≈(11±55)/2; подходит только положительный корень, второй , отрицат., не подходит
х=33, значит, одна сторона да и первый не подходит. т.к. получаем, что сторона больше периметра. чего быть не может.
Задача составлена некорректно
Решение задачи:
Доказательство строим на факте, что биссектриса AF делит угол BAD на два равных угла:
BAF = FAD
По правилу накрест лежащих углов при параллельных прямых AB и CD:
∠BAF = ∠ DFA.
Тогда углы FAD и DFA тоже равны, так как BAF = FAD. Значит, треугольник AFD – равнобедренный с основанием AF. Следовательно, AD = DF. По тем же причинам в треугольнике BCF BC = CF. В параллелограмме противоположные стороны равны – значит, BC = AD. Но тогда CF тоже равен AD, а значит, равен также FD. Если CF = FD, то F – середина CD.
Что и требовалось доказать.
Объяснение:
1.bc=ac-ab, точка b лежит между точками a,b
2.x+x+70°=180°,по свойству смежных углов
2x=110°
x=55°
угол1=угол3=110°-как вертикальные углы
угол2=угол4=55°,как вертикальные углы
3.тк c-биссектрисса, то ac=bc=40°
тк d-биссектрисса, то ad=cd=20°
4.koc=90°,тк пересечение
kom=aom=77°
aoc=koa-koc=64°
koa=kom+moc+coa
154°=77°+moc+64°
moc=13°