К плоскости, в которой лежит квадрат ABCD, проведён перпендикуляр KB, длина которого равна стороне квадрата. Отметь, какие из перечисленных свойств характеризуют данный треугольник:
1. ΔKDB имеет один тупой угол имеет один прямой угол имеет два одинаковых угла имеет все одинаковые углы имеет все острые углы
2. ΔDAB имеет два одинаковых угла имеет один тупой угол имеет один прямой угол имеет все одинаковые углы имеет все острые углы
3. ΔKAC имеет все одинаковые углы имеет два одинаковых угла имеет один прямой угол имеет все острые углы имеет один тупой угол
Пусть одна из трех равных частей равна х, тогда диагональ равна 3х.
вторая сторона равна по теореме Пифагора корень((3x)^2-(корень(2))^2)==корень(9x^2-2)
высота треугольника, стороны которого стороны прямогоульника и диагональ
равна по теореме Пифагора
корень((корень(2))^2-x^2)=корень(2-x^2)
площадь прямоугольника равна
2* 1/2* 3х* корень(2-x^2) (сумма двух равных реугольников, площадь треугольника равна половине произведения высоты на основание(в данном случае это диагональ прямоугольника))
Для нахождения площади этого треугольника можно применить две формулы: 1)S=a•h:2, где а - сторона, h- высота, которая к ней проведена. Пусть ∠А=30° Тогда высота ВН, как катет прямоугольного треугольника ВНА, противолежащий этому углу, равна половине АВ. ВН=4,5⇒ S=12•4,5:2=27 см² или, если провести высоту СН1 к стороне АВ ( тогда она пересечется с продолжением АВ) СН1=АС:2=6 S=AB•CH1:2=9•6:2=27см² –––––––––– 2) S= 0,5•a•b•sinα, где a и b - стороны треугольника. α- угол между ними S (ABC)=0,5•AB•AC•sin30º S=0,5•9•12=27см²
вторая сторона равна по теореме Пифагора корень((3x)^2-(корень(2))^2)==корень(9x^2-2)
высота треугольника, стороны которого стороны прямогоульника и диагональ
равна по теореме Пифагора
корень((корень(2))^2-x^2)=корень(2-x^2)
площадь прямоугольника равна
2* 1/2* 3х* корень(2-x^2) (сумма двух равных реугольников, площадь треугольника равна половине произведения высоты на основание(в данном случае это диагональ прямоугольника))
или корень(2)*корень(9x^2-2)
составляем уравнение
корень(2)*корень(9x^2-2)=2* 1/2* 3х* корень(2-x^2)
3х* корень(2-x^2)=корень(2)*корень(9x^2-2)
9x^2*(2-x^2)=2*(9x^2-2)18x^2-9x^4=18x^2-4
9x^4=4
x^4=4/9
x=корень(2/3)
3x=3*корень(2/3)=корень(6)