АВСД трапеция. ВС- меньшее основание. АВ = ВС = СД поскольку трапеция равнобокая и ее меньшее основание равно боковой стороне. АС - диагональ. Угол САД = 30 градусов. Это все по условию задачи. Решение. Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА. Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов. Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов. Угол АВС = 180 - 60 = 120 градусов. Поскольку трапеция равнобокая, то угол ВАД = СДА = 60 градусов угол АВС = ВСД = 120 градусов.
MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
Диагонали параллелограмма делятся точкой пересечения пополам. Поэтому ОК||СВ (АО=ОС, АК=КВ)
Треугольники ОАК и САВ - подобны.
АВ/АК=СВ/ОК = 2
СВ = 8
Периметр 2*(8+6)=28 см
Углы КОА и ВСА равны (подобные треугольники)
Задача 2.
Теугольники ДВЕ и АВС подобны. По свойству медианы треугольника она делится в отношении 2:1, считая от вершины.
ДЕ = 8
Объяснение: