1) Строим данный угол и проводим биссектрису. От вершины биссектрисы откладываем диагональ АВ и делим ее пополам, точкой О. Проводим перпендикуляр через точку О к диагонали АВ, который пересекает стороны угла в точках С и D, которые являются вершинами искомого ромба. 2) Пусть дан угол а и диагональ d. Необходимо построить ромб, в котором один из углов равен а, а противолежащая диагональ равна d. Предположим, что существует ромб ABCD, в котором диагональ Диагональ АС — биссектриса Проведем через точку A прямую и отложим отрезки по разные стороны от точки А, следовательно, прямоугольник. Построим Проведем биссектрису AC угла BAD. Через точку А проведем прямую и от точки А отложим Проведем через прямые, параллельные АС, точки пересечения этих прямых со сторонами угла BAD обозначим соответственно В и D. Раствором циркуля, равным АВ, проведем дугу с центром В, при этом, точку пересечения дуги с прямой а обозначим С. Получим четырехугольник ABCD. Докажем, что ABCD — ромб в котором — по построению. Так как прямоугольник по построению, то отрезок АО — серединный перпендикуляр к BD и равнобедренный ОС серединный перпендикуляр в значит, — равнобедренный Так как по построению, то и ромб с По построению значит, искомый ромб.
больше половины отрезка. получаем две точки их пересечения. 3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны. 4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны. 5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны. 6. И т. д. с каждой стороной.
93
Объяснение:
100 процентов правильно