ответ: Sосн=225π(см²);
Sбок.пов=375π(см²); Sпол=600π(см²);
V=1500π(см³); Sсеч=300см²
Объяснение: образующая конуса с радиусом образуют прямоугольный треугольник, в котором радиус и высота - катеты, а образующая- гипотенуза. Найдём высоту конуса h по теореме Пифагора:
h²=обр²-r²=25²-15²=625-225=400;
h=√400=20см
Так как осевым сечением конуса является треугольник, то его площадь вычисляется по формуле:
S=½×а×h, где а- сторона треугольника, а h- высота проведённая к стороне. Стороной бокового сечения является диаметр конуса=15×2=30см
Sсеч=½×30×20=15×20=300см²
Найдём площадь основания по формуле:
S=πr², где r- радиус основания:
Sосн=π×15²=225π(см²)
Площадь боковой поверхности конуса вычисляется по формуле: S=πrl, где r=радиус, а l- образующая:
Sбок.пов=π×15×25=375π(см²)
Чтобы найти полную площадь поверхности конуса нужно суммировать обе площади: основания и боковой поверхности:
Sпол=Sбок.пов+Sосн=
=375π+225π=600π(см²)
Теперь найдём объем конуса по формуле: V=⅓×Sосн×h=225π×20=4500π×⅓=
=1500π(см³)
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15