AB=BD (по условию)
Рассмотрим треуг. ABD
AB=AD (т. к. в ромбе все стороны равны)
AD=BD
следовательно треуг. ABD - правильный (равностороний)
В правильном треугольник все углы равные и равны 60
a) уг. BAD=уг. BCD=60
уг. АВС= уг. ADC=(360-уг. BAD-уг. BCD)/2=(360-60-60)/2=240/2=120
б) С диагональю BD 60 градусов, т.к. образуются два правильных треугольника
Рассмотрим треуг.АВС - равнобедренный (стороны ромба ранвы)
уг. В=120
уг. А=уг. С=(180-уг. В)/2=(180-120)/2=60/2=30
аналогично с треугольником ADC
а - сторона ромба
периметр
Р = 4а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны =>
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями,будут ^
d1/2, d2/2 -катеты
а - -гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2)^2 + (d2/2)^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 /12)^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см