Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
ответ будет 20 проводим радиус в точку касания и он будет перпендекулярен стороне ромба. Про углы надеюсь понятно. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы и по этому составляем соотношение и находим половину меньшей диагонали. Дальше рассматриваем треугольник в левом верхнем углу OB равняется 10 корней из 3-х на три. Опять же в этом прямоугольнике есть угол 30 градусов , по нему находим гипотенузу, а потом по теореме Пифагора находим AO , оно равно 10 сл. диагональ равна 20
88×2=176 180-176=4÷2=2
Объяснение:
1=88 2=2 3=88 4=2
1=3 2=4 карама карсы кабыргалары тен болады комегим тисе куаныштымын