
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Проведем АН - биссектрису угла А. Тогда <AHC=180-2α (по сумме внутренних углов треугольника), <AHВ=180-(180-2α) = 2α (как смежные углы). Отметим, что НМ - высота равнобедренного треугольника АНС. Проведем КН параллельно АС.
KH = DM, так как DKHM - прямоугольник. Тогда из треугольника ВКН:
КН=ВН*Sin(90-α) = BH*Cosα. (так как <KHB=<C = α).
Итак, DM= BH*Cosα. В треугольнике АВН по теореме синусов:
BH/Sin(<BAH)=AB/Sin(<AHB). Или BH/Sinα=AB/Sin2α. => AB=BH*Sin2α/Sinα.
Но по формуле двойного угла Sin2α = 2Sinα*Cosα =>
АВ=BH*2Sinα*Cosα/Sinα = BH*2*Cosα.
DM/AB=BH*Cosα/BH*2*Cosα =1/2. => DM=2AB, что и требовалось доказать.