По свойству биссектрис трапеции они образовывают при боковых сторонах равнобедренные треугольники. Тогда ВК = АВ = 25 см, СК = СД = 30 см, тогда ВС = ВК + СК = 25 + 30 = 55 см.
Построим высоты ВН и СМ. Четырехугольник НВСМ прямоугольник, тогда НМ = ВС = 55 см.
В прямоугольном треугольнике СДМ определим длину катета ДМ.
ДМ2 = СД2 – СМ2 = 900 – 576 = 324.
ДМ = 18 см.
В прямоугольном треугольнике АВН определим длину катета АН.
АН2 = АВ2 – ВН2 = 625 – 576 = 49.
ДМ = 7 см.
Тогда АД = АН + НМ + ДМ = 7 + 55 + 18 = 80 см.
Определим площадь трапеции.
Sавсд = (ВС + АД) * ВН / 2 = (55 + 80) * 24 / 2 = 1620 см2.
ответ: Площадь трапеции равна 1620 см2.
S = c * h / 2 (c---основание треугольника)
h = 2S / с
S = с^2 * sinA * sinB / (2sin(180-(A+B))) = c^2 * sinA * sinB / (2sin(A+B))
c^2 = 2sin(A+B) * S / (sinA * sinB)
h^2 = 4S^2 * sinA * sinB / (2S * sin(A+B)) = 2S * sinA * sinB / sin(A+B)
h = корень(2S * sinA * sinB / sin(A+B))