Катет прямоугольного треугольника равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу. Используя эту теорему имеем: АС=корень квадратный (АВ*AD) Отсюда: AB=AC^2:AD CD=10^2:4=25 cм. ответ: CD=25 см.
ΔАВС - равнобедренный , АС - основание , ∠В - противолежащий основанию. По свойствам равнобедренного треугольника: АВ=ВС - боковые стороны равны ∠А=∠С , т.к. у равнобедренного треугольника углы при основании равны. Биссектриса АН делит ∠А пополам ⇒ ∠ВАH=∠HAC
ΔАНС : АН=АС - по условию ⇒ равнобедренный. ∠НАС= х , ∠Н=∠С =2х - т.к. углы при основании . Сумма углов треугольника = 180° х+ 2х+2х=180 5х= 180 х=180/5 = 36° - ∠НАС ∠Н= ∠С= 36×2= 72 ° ⇒ Углы при основании ΔАВС ∠А=∠С= 72° ∠В= 180° - 72°×2= 180° - 144°=36° ответ: ∠В= 36°.
Очень просто. Как всегда, обозначим трапецию стандартным АВСД. В точке А угол равен 60 градусов. Опустим из В высоту к основанию в точку, к примеру, К. Так вот, угол АВК равен 30 градусов(АВК-прямоугольный треугольник). Катет, лежащий против угла в 30 градусов равен половине гипотенузы => АК=0,5. Так как трапеция равнобедренная, проделываем ту же самую операцию и со второй стороной. Теперь выходит, что основание состоит из 0,5 + 0,5 + х. Но так как мы знаем длину основания, то легко находим х . х=1,7. Следовательно, ВС=1,7