Дано: окружность, т.О - центр, ABCDEF - впис. прав. 6-угольник, АВ= 7 см, MNK - впис. прав. треугольник.
Найти: Рmnk.
Решение.
1) Радиус описанной окружности всегда равен стороне правильного шестиугольника, поэтому сразу делаем вывод, что радиус данной окружности равен стороне данного правильного шестиугольника. R=AB= 7 см.
2) Радиус описанной окружности правильного треугольника, выраженный через его сторону, равен:
R= √3/3 • а, где R - радиус, а "а" - сторона прав. треугольника.
Находим сторону треугольника ΔMNK.
7= √3/3 • MN;
MN= 7: √3/3;
MN= 7• 3/√3;
MN= 21/√3= 21√3/3= 7√3 (см)
3) Периметр треугольника MNK
Pmnk= 3MN= 3•7√3= 21√3 (см)
ответ: 21√3 см.
Задача № 4 -
Вариант 1: АС = с*b /(а-с);
Вариант 2: АВ = (а * с) / b
Задача № 5 - см. объяснение.
Объяснение:
Задача № 4.
Вариант 1.
1) Треугольники АСС1 и АВВ1 подобны, согласно признаку о равенстве 3-х углов.
2) В подобных треугольниках отношения сторон, лежащих против равных углов, равны.
3) Составляем пропорцию и решаем её:
а : с = (АС+b) : АС,
откуда (т.к. в пропорции произведение средних равно произведению крайних)
а * АС = с*АС + с*b,
а * АС - с*АС = с*b,
АС *(а-с) = с*b,
АС = с*b /(а-с)
ответ: АС = с*b /(а-с)
Вариант 2.
1) Треугольники АСС1 и АВВ1 подобны, согласно признаку о равенстве 3-х углов.
2) В подобных треугольниках отношения сторон, лежащих против равных углов, равны.
3) Составляем пропорцию и решаем её:
b : АВ = с : а,
откуда (т.к. в пропорции произведение средних равно произведению крайних)
а * b = АВ * с,
АВ = (а * с) / b
ответ: АВ = (а * с) / b
Задача № 5.
Вариант 1.
1) В параллелограмме АВСD AB║ СD, так как являются противоположными сторонами параллелограмма.
2) В трапеции АВМN АВ ║ МN, так как являются основаниями трапеции.
3) Если две прямые СD и МN параллельны третьей прямой (AB), то они параллельны между собой. То есть СD║ МN.
Вариант 2.
1) Согласно условию задачи, АВСD и АВМN не лежат в одной плоскости, а пересекаются по линии АВ. Это значит, что точка C лежит в одной плоскости (АВСD), а точка N - в другой (АВМN) и не на линии АВ. Следовательно, прямые АВ и СN не лежат в одной плоскости, и, согласно определению, являются скрещивающимися (мимобiжнi).