task/30121172 Даны три последовательные вершины параллелограмма MPKT параллелограмм M( -1 ; 2) , P(3; 1) , K(1 ; -2). Напишите уравнение прямой PT.
решение Диагонали параллелограмма точкой пересечения , пусть здесь это точка A( x₀; y₀) делятся пополам.
X(A) =( ( X(M) +X(K) ) / 2 = ( - 1 + 1 ) / 2 = 0 ;
Y(A) =( ( Y(M) +Y(K) ) / 2 = (2 + (-2) ) / 2 = 0 .
Получилось , что точка пересечения диагоналей совпадает c началом координат ( диагонали проходят через начало координат).
Поэтому искомое уравнение имеет вид : у = kx ; прямая проходит через точку P(3 ; 1 ) , поэтому 1 = k*3 ⇒ k =1 /3 и y =(1/3)*x.
ответ: y = (1/3)*x
P.S. В данном конкретном случае не было необходимости определить координаты вершины T.
Общее решение. Определим координаты вершины T.
X(A) = ( ( X(M) +X(K) ) / 2=( ( X(P) +X(T) ) / 2 , где A -точка пересечения диагоналей MK и PT. Следовательно :
X(T) = X(M) +X(K) - X(P) ) ⇔ - 1 + 1 = 3 + x₂ ⇔ x₂ = - 3 . Аналогично :
Y(T) = Y(M) + Y(K) - Y(P) ⇔ 2 + (-2) = 1 + y₂ ⇔ y₂ = - 1 . P ( 3; 1 ) и T( -3 ; -1 )
Уравнение прямой проходящей через две точки ( x₁ ; y₁) и (x₂ ; y₂) :
y - y₁ = [ (y₂ - y₁) / (x₂ - x₁) ]*(x - x₁) ; k = (y₂ - y₁) / (x₂ - x₁) - угловой коэфф.
В данном случае ( x₁ ; y₁) ≡ ( 3; 1 ) и (x₂ ; y₂) ≡ ( -3 ; -1 )
y - 1 = (-1 -1) /( -3 - 3) * (x -3) ⇔ y - 1 = (1 /3) * (x - 3) ⇔ y = (1 /3) * x .
Объяснение:
ЗАДАЧА 6
ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4
НАЙТИ: АВ
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°
Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8
ОТВЕТ: АВ=8
ЗАДАЧА 7
ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6
НАЙТИ: АВ
Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12
ОТВЕТ: АВ=12
ЗАДАЧА 8
ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°
НАЙТИ: АС
РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:
2х+х=90
3х=90
х=90÷3=30°
Итак: угол В=30°, тогда угол А=2×30=60°
Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7
ОТВЕТ: АС=7
ЗАДАЧА 9
ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.
НАЙТИ: МР
РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.
МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.
Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5
ЗАДАЧА 10
ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8
НАЙТИ: АС
Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°
Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8
Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4
Итак: АК=8, СК=4.
Тогда АС=СК+АК=4+8=12
ОТВЕТ: АС=12