Вначале найдём уравнения сторон.
Для АВ. прямая проходит через точки А и В, ее уравнение 5х - 3у - 3 = 0
Для АС. прямая проходит через точки А и С. ее уравнение х + 3у + 3 = 0
Для ВС. прмяая проходит через точки В и С, ее уравнение 7х + 3у - 33 = 0
Медиана ВМ проходит через точку В и середину отрезка АС. Найдем координаты середины отрезка АС.
х = (6 + 0)/2 = 3 у = (-3-1)/2 = -2
Таким образом, медиана ВМ проходит через точки В(3;4) и (3;-2), и ее уравнение х = 3 (она параллельна оси ординат).
Высота BD образует прямой угол с прямой АС, уравнение которой х + 3у + 3 = 0. Условие перпендикулярности прямых - произведение их угловых коэффициентов равно -1.
АС имеет угловой коэффициент, равный - 1/3. Следовательно, угловой коэффициент искомой прямой - высоты BD - будет равен 3. Значит, уравнение высоты имеет вид:
3х - у - 5 = 0.
Найдем косинус А. Этот угол лежит между прямыми АВ = корень из 34 и АС = корень из 40. По теореме косинусов находим косинус А: он равен 2/(корень из 35)
Центр тяжести треугольника - точка пересечения его медиан. Можно отыскать, применяя дфойное интегрирование, а можно (что полегче) геометрическим
1) ΔАВС , ∠С=90° , СН⊥АВ , ∠ АСН=60°, ВС=3,6 см . Найти: АВ=?
Рассм. ΔАСН. ∠А=90°-∠АСН=90°-60°=30° .
Рассм. ΔАВС. Катет ВС=3,6 см лежит против угла в 30°, значит он равен половине гипотенузы, то есть ВС=1/2*АВ ⇒ АВ=2*ВС ,
АВ=2*3,6=7,2 (см) .
ответ: АВ=7,2 см .
2) ΔАВС , ∠С=90° , ∠С:∠А=4:2 , СН⊥АВ , ВН=3 см . Найти АН .
∠А+∠С=90° , ∠С=4k , ∠A=2k , 4k+2k=90° , 6k=90° , k=15° .
∠C=4*15°=60° , ∠A=2*15°=30° .
Рассм. ΔВСН. ∠ВНС=90° , ∠ВСН=90°-∠В=90°-60°=30° .
Катет ВН=3 см лежит против угла в 30°, тогда гипотенуза в 2 раза больше этого катета: ВС=2*3=6 см.
Из теоремы Пифагора: СН=√(ВС²-ВН²)=√(36-9)=√27=3√3 (см)
Рассм. ΔАСН. ∠АНС=90° , ∠А=30° ⇒ катет СН лежит против угла
в 30° ⇒ АС=2*СН=2*3√3=6√3 (см) .
АН=√(АС²-СН²)=√(36*3-9*3)=√81=9 (см)
ответ: АН=9 см .