Відповідь:
Четырехугольник А1В1С1Д1 - прямоугольник.
П = 15 см.
S = 12,5 см^2.
Пояснення:
В произвольном четырехугольнике АВСД диагонали АС и ВД пересекаются под прямыми углами. АС = 10 см., а ВД = 5 см. Соединим середины сторон четырехугольника АВСД и получим четырехугольник А1В1С1Д1. Докажем, что четырехугольник А1В1С1Д1 - является прямоугольником.
Рассмотрим треугольник АВС. Отрезок А1В1 - является средней линией этого треугольника, так как расстояние от диагонали АС до точек А1 и С1 равно половине расстояния от диагонали АС до точки В. Так как А1В1 - средняя линия треугольника АВС, то А1В1 параллельна диагонали АС и А1В1 = 1/2 × АС = 1/2 × 10 = 5 см.
Аналогично доказывается, что С1Д1 -средняя линия треугольника АСД, что А1Д1 - средняя линия треугольника АВД, что В1С1 - средняя линия треугольника ВСД.
В1С1 = 1/2 × ВД = 1/2 × 5 = 2,5 см.
Так как А1В1 и С1Д1 параллельны диагонали АС, то они параллельны и между собой.
Так как А1Д1 и В1С1 параллельны диагонали ВД, то они параллельны и между собой.
Так как диагонали АС и ВД перпендикулярны, то порарно перпендикулярны между собой и отрезки А1В1, В1С1, С1Д1, Д1А1, значит четырехугольник А1В1С1Д1 - является прямоугольником.
Выше мы доказали, что А1В1 = С1Д1 = 5см., а В1С1 = Д1А1 = 2,5 см.
Значит периметр четырехугольника А1В1С1Д1
П = 5 + 2,5 + 5 + 2,5 = 15 см.
Площадь четырехугольника А1В1С1Д1
S = 5 × 2,5 = 12,5 см^2.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
Трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
Сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
Пусть длина меньшего основания а . Тогда длина большего - 8-а.
Средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
Площадь трапеции равна полусумме оснований, умноженной на высоту.
Пусть высота каждой части трапеции равна h.
Тогда площадь верхней трапеции будет (а+4)•h:2,
а площадь большей (8-а+4)•h:2=(12-а)•h:2
По условию отношение этих площадей равно 5/11⇒
[ (а+4)•h:2]:[ (12-а)•h:2]=5/11
Отсюда 60-5а=11а+44
16а=16
а=1
Меньшее основание =1(ед. длины)
Большее 8-1=7 (ед. длины.