1. Фраза "Из молока получают 10% творога" означает, что из молока получают 10/100 или 0,1 творога. Чтобы найти массу творога, умножаем 40 на 0,1 получаем 4
2. То же самое, что и предыдущая, но теперь умножаем 20 кг на 0,107
3. Обозначим катет, который надо найти за x. Теперь по теореме Пифагора составляем уравнение
5^2+x^2=(x+1)^2
25+x^2=x^2+2x+1
2x=24
x=12
ответ:12 см
4. С ромбе все четыре стороны равны, то есть одна сторона ромба равна 24/4=6 см. Если угол, смежный с одим из углов этого ромба равен 30, то сам угол ромба равен (180-30)=150 градусам. Теперь находим площадь. Так как ромб состоит из двух равных треугольников (стороны ромба равны, диагональ, лежащая против угла в 150 градусов - общая - по терм сторонам) а площадь каждого из них равна 6*6*0,5*sin150 (по теореме синусов) то площадь всего ромба будет равна 6*6*sin150=18 см
1. Фраза "Из молока получают 10% творога" означает, что из молока получают 10/100 или 0,1 творога. Чтобы найти массу творога, умножаем 40 на 0,1 получаем 4
2. То же самое, что и предыдущая, но теперь умножаем 20 кг на 0,107
3. Обозначим катет, который надо найти за x. Теперь по теореме Пифагора составляем уравнение
5^2+x^2=(x+1)^2
25+x^2=x^2+2x+1
2x=24
x=12
ответ:12 см
4. С ромбе все четыре стороны равны, то есть одна сторона ромба равна 24/4=6 см. Если угол, смежный с одим из углов этого ромба равен 30, то сам угол ромба равен (180-30)=150 градусам. Теперь находим площадь. Так как ромб состоит из двух равных треугольников (стороны ромба равны, диагональ, лежащая против угла в 150 градусов - общая - по терм сторонам) а площадь каждого из них равна 6*6*0,5*sin150 (по теореме синусов) то площадь всего ромба будет равна 6*6*sin150=18 см
а) По условию MD перпендикулярна плоскости квадрата,
АD -проекция АМ на плоскость квадрата.
СD - проекция СМ на плоскость квадрата.
По т. о 3-х перпендикулярах МА⊥АВ, и МС⊥СВ.
Углы МАВ и МСВ прямые,⇒ ∆ МАВ и Δ МСВ прямоугольные.
б) В прямоугольном ∆ МDB катет DB равен MD:tg60°=6:√3=2√3
BD- гипотенуза прямоугольного равнобедренного ∆ ABD, его острые углы=45°.
АВ=ВD•sin45°=2√3•√2/2=√6
в) МD перпендикулярна плоскости квадрата по условию.
В ∆ АВD катет АD является проекцией наклонной АМ на плоскость квадрата.
Гипотенуза DB является проекцией МВ на плоскость квадрата.
АВ - общий катет ∆ АМВ и ΔΔ ADB. ⇒ ∆ ABD является проекцией ∆ MAB на плоскость квадрата.
в) В ∆ МАВ по т. о 3-х перпендикулярах наклонная МА⊥АВ,⇒
∆ МАВ прямоугольный.
Ѕ=AM•AB:2
Из ∆ АМD по т.Пифагора АМ=√(MD²²+AD²²)=√(36+6)=√42
S=√42•√6=√(7•6•6)=6√7 см²