Предположим, что существует точка, расстояние от которой до любой вершины четырехугольника меньше 0.5. Тогда четырехугольник целиком лежит внутри окружности с центром в этой точке и радиусом 0.5. Диагональ четырехугольника - это отрезок, лежащий внутри окружности, так как его концы лежат внутри окружности. Значит, диагональ строго меньше диаметра окружности, то есть, меньше 1. Но если сумма диагоналей равна 2, значит, по меньшей мере одна диагональ не меньше 1. Получили противоречие. Значит, такой точки не существует и расстояние от любой точки плоскости до какой-то из вершин четырехугольника не меньше 0.5, что и требовалось.
Диагональ ромба разбивает его на два равных треугольника, со сторонами равными сторонам ромба и третья сторона - диагональ ромба, все стороны равны. В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий. Сумма углов четырехугольника 360°. 360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба 240°:2=120° - градусная мера противолежащих углов ромба второй пары ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов. ответ: два угла по 60 градусов и два по 120 градусов.