Через каждую из двух параллельных прямых проведены плоскости и они пересекаются. Как располагается линия пересечения плоскостей относительно заданных прямых?
В пространстве прямая может лежать в плоскости, а может и не лежать в ней. При этом, если прямая не лежит в плоскости, то по аксиоме прямой и плоскости она не может иметь с этой плоскостью более одной общей точки. Это означает, что плоскость и не лежащая в ней прямая либо имеют одну общую точку, либо не имеют ни одной общей точки. Если прямая и плоскость имеют ровно одну общую точку, то они пересекаются. А если прямая и плоскость не имеют ни одной общей точки?
Определение. Прямая и плоскость, не имеющие общей точки, называются параллельными.
Если прямая a и плоскость α параллельны, то записывают a ‖ α или α ‖ a. При этом говорят, что прямая a параллельна плоскости α или плоскость α параллельна прямой a.
При решении стереометрических задач обоснование параллельности прямой и плоскости при только одного определения их параллельности часто затруднительно и не приводит к желаемому результату. В таких случаях пользуются признаками параллельности прямой и плоскости, один из которых выражает следующая теорема.
Теорема 9 (признак параллельности прямой и плоскости). Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны.
Рис. 50
Дано: b ⊂ α, a ‖ b, a ⊄ α (рис. 50).
Доказать: a ‖ α.
Доказательство. Так как прямая b лежит в плоскости α, то (по теореме о двух параллельных прямых, одна из которых пересекает плоскость (т. 5)) прямая a, параллельная прямой b, не может пересекать плоскость α; а так как прямая a по условию не лежит в плоскости α, то прямая a параллельна плоскости α. Теорема доказана. ▼
Смотрите вложенный файл. Там чертеж. Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!) Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а. Образуется прямоугольный треугольник. Из него получаем: а²+а²=2а² Тогда сторона вписанного квадрата равна а√2 Периметр вписанного квадрата равен p=4а√2 Периметр описанного квадрата равен P=8а p/P=(4а√2)/(8а)=√2/2(это отношение периметров) Площадь вписанного квадрата s=(a√2)²=2a² Площадь описанного квадрата S=S₂=(2a)²=4a² Отношение площадей: s/S=(2a²)/(4a²)=1/2
По свойству медиан : медианы пересекаются и точкой пересечения делятся в отношении2/1 считая от вершины.Значит ВМ это часть медианы и составляет 2 части.
Проведем медиану на сторону АС . Она будет состоять из трех частей и ВМ принадлежит медиане . одна часть медианы равна 3( 6/2). Значит вся медиана на сторону АС равна 3*3=9 и она будет являться высотой так как треугольник АВС равнобедренный АВ=ВС. И по формуле найдём площадь треугольника АВС S= 9(Высота)*10(сторона , к которой проведена высота)/2=45
Параллельность прямой и плоскости
В пространстве прямая может лежать в плоскости, а может и не лежать в ней. При этом, если прямая не лежит в плоскости, то по аксиоме прямой и плоскости она не может иметь с этой плоскостью более одной общей точки. Это означает, что плоскость и не лежащая в ней прямая либо имеют одну общую точку, либо не имеют ни одной общей точки. Если прямая и плоскость имеют ровно одну общую точку, то они пересекаются. А если прямая и плоскость не имеют ни одной общей точки?
Определение. Прямая и плоскость, не имеющие общей точки, называются параллельными.
Если прямая a и плоскость α параллельны, то записывают a ‖ α или α ‖ a. При этом говорят, что прямая a параллельна плоскости α или плоскость α параллельна прямой a.
При решении стереометрических задач обоснование параллельности прямой и плоскости при только одного определения их параллельности часто затруднительно и не приводит к желаемому результату. В таких случаях пользуются признаками параллельности прямой и плоскости, один из которых выражает следующая теорема.
Теорема 9 (признак параллельности прямой и плоскости). Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны.
Рис. 50
Дано: b ⊂ α, a ‖ b, a ⊄ α (рис. 50).
Доказать: a ‖ α.
Доказательство. Так как прямая b лежит в плоскости α, то (по теореме о двух параллельных прямых, одна из которых пересекает плоскость (т. 5)) прямая a, параллельная прямой b, не может пересекать плоскость α; а так как прямая a по условию не лежит в плоскости α, то прямая a параллельна плоскости α. Теорема доказана. ▼