Дана правильная четырёхугольная пирамида PABCD с вершиной P и основанием ABCD. Длина стороны основания пирамиды PABCD равна 1, а длина бокового ребра равна 2. Сфера с центром в точке O касается плоскости (ABC) в точке A и касается бокового ребра PB. Найдите объём пирамиды OABCD.
Из прямоугольного треугольника АСН найдем АС. Так как Sinφ=√15/8, то cosφ=√(1-15/64)=7/8.
Тогда АС=НС/Cosφ или АС=7*8/7 = 8.
Найдем АН по Пифагору. АН=√(АС²-НС²) или АН=√(64-49) = √15. Перпендикуляр ВР=АН=√15. Найдем DP по Пифагору. DP=√(BD²-BP²) или DP=√(96-15) = 9.
Прямоугольные треугольники НСО и DРО подобны с коэффициентом подобия равным НС/DP=7/9.Значит НО/ОР=7/9 или НО/(НР-НО)=7/9. Но НР=АВ=16. Отсюда НО=7. Тогда ОР=16-7=9.
По Пифагору найдем ОС и OD из прямоугольных треугольников СНО и DPO. ОС=7√2, OD=9√2, CD=CO+OD=16√2.
Тогда периметр четырехугольника CАВD равен
СА+АВ+ВD+DС=8+16+4√6+16√2=24+4√2(√3+4).