1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)
По условию точки КLM делят соответствующие стороны в отношении 2:1. То есть АМ=1/3АВ а МС=2/3АВ. То же самое и в отношении остальных сторон треугольника АВС. Тогда площадь треугольника АКМ равна Sакм=1/2*АК*АМ*sinA=1/2*(1/3АВ)*(2/3АС)*sinА=(1/2*АВ*АС*sinА)*2/9=Sавс*2/9. Аналогично SквL=1/2*KB*BL*sinB=Sавс*2/9. SLMC=1/2*LC*MC*sinC=Sавс*2/9. Площадь треугольника KLM равна Sавс-Sакм-SkbL-SLMC=Sавс-2/9*Saвс-2/9*S-2/9*Sавс=1/3*Sавс=1/3*321=107.