Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются. В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11 Биссектрисы ВХ и CY делят угол на равные углы 45° Рассмотрим ΔХАВ и ΔYCД: ∠АВХ=∠ДCY = 45° (по док. выше) АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее) Из этого всего мы доказали, что ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними) Из этого доказательства мы выяснили, что АХ=ДY = 6 Но вся сторона АД = 11, получается, что две биссектрисы пересекаются и расстояние между XY 1 см(или в чем там измеряется)
Я здесь что-то много написал, но ты разберись и сам напиши попонятнее Но я старалась )
Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
ответ: 1. MN=7 , KH=14
2. 14 , 11 , 11
Объяснение:
1. На изображении
2. Т.к средняя линия равна половине основания треугольника, то основание равно 7*2=14
Т.к треугольник равнобедренный, то боковые стороны равны.
(36-14):2=11см