90 см²
Объяснение:
1) Площадь основания:
4 · 3 : 2 = 6 см².
2) Таких оснований 2. Их площадь равна:
Sосн = 6 · 2 = 12 см².
3) Для расчета площади боковой поверхности, необходимо периметр основания умножить на высоту. Так как в основании лежит прямоугольный треугольник, и известны его катеты, то гипотенузу можно рассчитать по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
с² = а²+b² = 4²+3² = 16+9 = 25,
откуда с= √25 = 5 см.
4) Периметр треугольника, лежащего в основании призмы, равен:
3+4+5 = 12 см.
5) Площадь боковой поверхности призмы:
Sбок = 12 · 6,5 = 78 см².
6) Площадь полной поверхности равна сумме площадей оснований и боковой поверхности:
Sполн = Sосн + Sбок = 12 + 78 = 90 см²
ответ: 90 см².
доказываем
Объяснение:
Если смотреть на рисунок, то мы видим проведённый луч АВ, который является в треугольнике АСС1 биссектрисой, медианой и высотой, значит СВ=С1В;
Существует свойство равнобедренного, которое звучит так: если биссектриса и медиана, высота является одной линией, то треугольник равнобедренный.
Значит, мы имеем: СВ=С1В;
т.к. треугольник равнобедренный, то стороны АС=АС1;
АВ1 будет являться общей (смежной) стороной, значит мы имеем, что:
СВ=С1В; АС=АС1; АВ1 - общая, значит треугольники АСВ1=АС1В1 по третьему признаку равенства треугольников.
Удачи.
см
Если из центра восьмиугольника провести отрезки соединяющие вершины, то вписанный многоугольник будет разбит на восемь одинаковых равнобедренных треугольников. Боковая торона которых будет равна радиусу описанной окружности или половине диаметра.
см
Учитывая, что отрезки делят окружность на 8 равных частей, то угол при вершине будет равен
Найдем прощать такого треугольника через стороны и угол между ними
Площадь восьмиугольника в 8 раз больше площади треугольника
ответ: