1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°