Трапеция АВСД. Угол АВД - прямой. Треугольник АВД - прямоугольный, АВ и ВД - катеты, АД - гипотенуза, ВН - высота этого треугольника и высота трапеции. Высота из прямого угла к гипотенузе делит ее на отрезки, которые являются проекциями катетов треугольника на гипотенузу.
АН - проекция боковой стороны АВ ( и катета треугольника АВС) на АД.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. ⇒ ВД²=АД*ДН Пусть ДН=х Тогда АД=7+х 144=(7+х)*х ⇒ х²+7х-144=0 Решив квадратное уравнение, получим х₁=9 х₂=-16 ( не подходит) НД=9 АД=7+9=16 см Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой: ВН²=АН*НД ВН²=7*9=63 ВН=√63=3√7 см..
Цитата: "центр О вписанной окружности равноудалён от всех сторон и является точкой пересечения биссектрис треугольника. В равнобедренном треугольнике высота, опущенная на основание, является и биссектрисой и медианой. Значит центр О вписанной окружности лежит на высоте. Тогда радиус вписанной окружности является катетом прямоугольного треугольника, вторым катетом которого является половина основания. Пусть R = половине основания, тогда прямоугольный тр-к будет равнобедренным и половина угла при основании будет равна 45°. Угол при основании тогда =90°, что невозможно. Итак, радиус не может быть равен половине основания, значит и диаметр впмсанной окружности всегда меньше основания данного нам равнобедренного тр-ка, что и требовалось доказать..
ответ: 20 см, 20 см, 16 см.
Объяснение:
MN-средняя линия треугольника АВС. MN=1/2 AC;
AC=2MN=2*√64=2*8=16 см.
Р=АВ+ВС+АС, но АВ=ВС=х см.
2х+16=56;
2х=40;
х=20 см - боковые стороны.