(Матрицы) Даны вершины пирамиды АВСD: __X Y Z Найти: A 8 1 3 а) Длину стороны ВС B 3 5 6 б) Угол СВD C 5 8 -6 в) Площадь треугольника ВСD D -2 12 3 г) Объем пирамиды АВСD
Для этого надо найти длины сторон по координатам вершин: A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004. ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6. АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004. Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна: ha = 2√(p(p-a)(p-b)(p-c)) / a. a b c p 2p S 8.5440037 6 8.5440037 11.544004 23.08800749 24 ha hb hc 5.61798 8 5.61798
Дано: АВС- равнобедренный треугольник.
АМ- медиана.(18.4)
Р треугольника АВМ=79.2
Найти: Р треугольника АВС
АМ является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
Следовательно: Угол А делиться пополам (так как АМ является бессектрисой.) Следовательно эти половинки ровны.
АМ-общая сторона.
ВА=АС (по условию так как треугольник АВС равнобедренный.)
Следовательно треугольники АВМ=АМС (по 1 признаку.)
Следовательно Р треугольника АВС равен.
(79.2-18.4)• 2
Все готово
Объяснение: