Отрезок, соединяющий основание перпендикуляра и наклонной, проведённых из одной и той же точки, является проекцией этой наклонной. (см. рисунок в приложении).
В треугольнике боковая сторона - наклонная, его высота - перпендикуляр к прямой, содержащей другую сторону.
Высота равностороннего треугольника еще и медиана и биссектриса. Все углы равностороннего треугольника =60°. Поэтому проекция стороны - катет прямоугольного треугольника, который противолежит углу 30°. По свойству такого катета он равен половине гипотенузы. ⇒
Проекция стороны данного треугольника на прямую, содержащую другую сторону – 1:2=0,5
Дано: прямоугольный треугольник АВС;
угол С = 90;
СА = 3;
СВ = 4;
СН - высота.
Найти: СН - ?
1) рассмотрим прямоугольный треугольник АВС. Тогда по теореме Пифагора:
АС^2 + СВ^2 = АВ^2;
3^2 + 4^2 = АВ^2;
9 + 16 = АВ^2;
25 = АВ^2;
АВ = 5;
2) В прямоугольном треугольнике каждый катет - это среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Тогда
ВС = √( АВ * НВ);
4 = √( 5 * НВ) (возведем правую и левую часть в квадрат);
16 = 5 * НВ;
НВ = 16/5;
НВ = 3,2;
3) АС = √( АВ * НА);
3 = √( 5 * НА) (возведем правую и левую часть в квадрат);
9 = 5 * НА;
НА = 9/5;
НА = 1,8;
4) СН = √АН * НВ;
СН = √1,8 * 3,2;
СН = √5,76;
СН = 2,4.
ответ: 2,4.