пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук пук
Дана трапеция ABCD AB и CD - основания. AB=3,BC=9,CD=15,AD=7.
Из точки В проводим отрезок ВЕ, равный и параллельный AD.
Получим треугольник ВСЕ с основанием СЕ = 15 - 3 = 12.
По теореме косинусов находим косинусы углов при основании этого треугольника, которые равны косинусам углов при основании трапеции.
cos A = 0,666666667 cos B = -0,111111111 cos С = 0,814814815
Аrad = 0,841068671 Brad = 1,682137341 Сrad = 0,618386642
Аgr = 48,1896851 Bgr = 96,37937021 Сgr = 35,43094469.
Далее по этим косинусам и сторонам трапеции находим диагонали.
Известно: две стороны а , в и угол между ними С.
Диагональ d2 равна :
a b d2 С градус С радиан
7 15 11,5758369 48,1896851 0,841068671.
Известно: две стороны а , в и угол между ними D.
Диагональ d1 равна :
a b d1 D градус D радиан
9 15 9,273618495 35,43094469 0,618386642.